top of page


추론 서비스를 위한 AI 데이터센터 구축 가이드
현재 많은 기업이 AI 모델을 프로덕션 환경에 배포해 추론 서비스를 제공하는 과정에서 기술적 장벽에 부딪히고 있습니다. 비효율적인 GPU 자원 활용, 느린 배포 속도, 낮은 안정성, 그리고 감당하기 어려운 운영 비용은 AI 전환을 가로막는 주요 요인입니다. 이는 최신 GPU를 장착한 서버를 도입한다고 해결할 수 있는 문제가 아닙니다. 성공적으로 프로덕션 추론 인프라를 구축하려면 컴퓨팅, 네트워킹, 냉각, 그리고 지능형 소프트웨어를 긴밀하게 통합하는 풀스택(Full-Stack) 접근법이 필수입니다. 이번 포스트에서는 대원씨티에스의 파트너인 KAYTUS가 제안하는 효율적인 AI 추론 환경 구축을 위한 가이드를 정리해 보았습니다. AI 추론 최적화를 위한 고려 사항 AI 추론은 단일한 워크로드가 아닙니다. 거대 언어 모델(LLM)이나 멀티 모달 언어 모델(MMLM) 기반 추론 서비스는 Prefill과 Decode 두 단계로 분리해 최적화하는 전략이
Chang Sun Park
2일 전2분 분량


AI 시대의 역설, 왜 비싼 GPU는 잠자고 있을까?
최신 GPU 확보를 위한 경쟁 열기가 여전합니다. AI 데이터센터를 조직의 중요 투자 대상으로 삼는 곳이 늘면서 한정된 GPU 자원 확보 경쟁이 갈수록 치열해지고 있습니다. 그렇다면 GPU 자원은 확보만 하면 되는 것일까요? 막대한 투자 이면에는 낮은 GPU 활용률이라는 불편한 진실이 숨어 있습니다. 활용률이 낮은 이유 낮은 GPU 활용률 문제의 근본 원인을 파악하려면 GPU를 넘어 시스템 전체를 바라보아야 합니다. GPU 활용률은 단일 지표가 아니라 컴퓨팅, 메모리, 데이터 입출력(I/O)이 복잡하게 얽힌 결과물입니다. 낮은 GPU 활용률을 초래하는 핵심적인 기술적 병목 현상은 여러 가지가 있습니다. 데이터 병목 현상(Data Starvation)부터 알아보겠습니다. 강력한 GPU도 처리할 데이터가 제때 공급되지 않으면 멈춰 섭니다. 느린 스토리지 I/O, 네트워크 지연, 비효율적인 데이터 전처리 파이프라인으로 인해 GPU가 데이터를 기다리며
Chang Sun Park
2일 전3분 분량


KAYTUS, MotusAI로 '추론 시대'의 과제를 해결하다!
AI 산업의 무게 중심이 모델 '훈련(Training)'에서 대규모 '추론(Inference)'으로 빠르게 옮겨가고 있습니다. 이제 기업은 훈련한 모델을 실제 프로덕션 환경에 배포해 가치를 만드는 '추론' 단계에 집중합니다. 추론은 AI 챗봇의...
Chang Sun Park
8월 24일3분 분량
bottom of page